
Vulcan
Release 0.1

Thiago Trevizam Dorini

Apr 13, 2022

CONTENTS

1 Contents 3
1.1 Usage . 3
1.2 Configuration - vulcan.py . 4
1.3 Configuration - vulcan.sh . 5
1.4 Automated backup . 7
1.5 Useful scripts . 7
1.6 Types of calculations . 8

i

ii

Vulcan, Release 0.1

Vulcan is a Python code to make life easier when working with VASP. It optimized all steps in the calculation process,
from creating the structure to be studied to making a backup of the results on a SQL database. It was developed to
work exclusively on VASP (for now) and in a remote supercomputer cluster with a queue system, and makes heavy use
of the Atomic Simulation Environment (ASE).

Fig. 1: Flowchart of the Vulcan code.

Note: This project is under active development.

CONTENTS 1

Vulcan, Release 0.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Usage

1.1.1 Requirements

• Python 3.x;

• Numpy;

• Matplotlib;

• ASE (Atomic Simulation Environment).

1.1.2 Installation

The code is divided into two essential files (“vulcan.py” and “vulcan.sh”) and three complementary files (“vul-
can_custom_calculators.py”, “vulcan_helper.py”, and “vulcan_structures.py”). These files can be obtained by cloning
my github repertory:

$ git clone https://github.com/DoriniTT/Vulcan

I use the complementary files as modules for the essential files, so you’ll need to add where to find these files in your
PYTHONPATH. Essentially, these files are helpful for two things: (1) Creating the structures you desire with the “vul-
can_helper.py” and “vulcan_structures.py” and (2) Defining the calculator with the “vulcan_custom_calculators.py”.
There are a few examples inside these files that I used, so fell free to use them as a template for your case.

By default, I store these files in python/launch/. Therefore, I suggest you put them somewhere you’ll easily find:

$ mkdir -p <path-the-git-repo>/python/launch
$ touch <path-the-git-repo>/python/launch/__init__.py

And put the following in your ~/.bashrc:

$ export PYTHONPATH=${PYTHONPATH}:<path-to-git-repo>/python

This way these complementary files are acessible to the vulcan.py file and you are ready to go.

3

Vulcan, Release 0.1

1.1.3 Initialization

Since we will be using the ASE calculators, you need to set your environment so that the program knows where to find
the right executables and files. For this, you can go to:

https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp.html?highlight=vasp#ase.calculators.vasp.Vasp

Note: The Vulcan program only supports VASP for now, but I’m working on adding more ab initio codes.

At its core, this program is really simple. It has the vulcan.sh file to manage the environment for the vulcan.py file.
After the configuration step, all you have to do to launch the code is:

$ sh vulcan.sh

But first, we need to know how to configure these files for the type of calculation that we intend to do, which is what
we will see in the next section.

1.2 Configuration - vulcan.py

This is the most important part. Let’s do a step-by-step general configuration with a example structure.

I’ll assume that you have access to a supercomputer to launch your calculations as a job (i.e. Slurm). I’ll show later
how to launch your calculations in your desktop machine. To begin with, create a new directory in your $HOME (~)
for this project and put both the vulcan.py and vulcan.sh there.

$ mkdir ~/tutorial-vulcan
$ cd ~/tutorial-vulcan

Assuming that these files are already in your home:

$ cp ~/vulcan.* ~/tutorial-vulcan

After this step, we can start configuring these files.

1.2.1 Structure generation

In general, the hole python script is centered around the structures function, which returns a list with all the structures
that we want to study. All you have to do is create an Atoms ASE object and put it in the list. In the vulcan.py script,
this needs to be done under the DEFINE THE STRUCTURES HERE commentary.

Note: If you are not familiar with the Atomic Simulation Environment, please take a look at their documentation on
how to create an Atoms object.

We will begin creating an Cu-FCC structure:

#################### DEFINE THE STRUCTURES HERE ########################

cu = bulk('Cu', 'fcc', a=3.6)
struc = [cu]

###

4 Chapter 1. Contents

https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp.html?highlight=vasp#ase.calculators.vasp.Vasp

Vulcan, Release 0.1

Here we will put only one structure to make things easier, but the program is made so that you can put as much structures
as you want. That’s all you need for this part. It becames more complex according to the structures that you want to
create, but this part is entirely up to you.

1.2.2 Calculation setup

Now you need to focus on the calculators function. I have already put some default parameters for a DFT calculation
with VASP, but you need to modify it according to what you need. For the functions implemented on this code, these
default parameters usually works just fine. You can look at the VASP wiki for a description of all input parameters for
VASP: https://www.vasp.at/wiki/index.php/The_VASP_Manual

1.2.3 Launch script setup

The last thing that you need to create is a launch_{your-machine} function (it is located right after the
run_step_relax function). I have 4 functions created depending on the machine that I’m using. You need to create
your own function based on a JOB script that you want. In my case, I automatized the number of processors that
the JOB script will launch based on each structure’s number of atoms. You can take advantage on the code’s defined
variables to adjust how you automatize your JOB.

Important: The only line that you cannot touch in the JOB script is the:

$ python run_$structure.py

Please leave this line as the last one in your job, otherwise the code will not work.

1.2.4 Optional setup

Although this is a optional, I highly recommend you to take a look on the run_step_relax function on the vulcan.py
script. Depending on the type of calculation you intend to do, this is the function that you need to modify. Again, it
has default parameters that works well for most cases.

Note: The run_step_relax function is the most versitile function in the code. Please try to understand its format if
you want to add a new type of calculation.

1.3 Configuration - vulcan.sh

Now, this file’s configuration will be devided into two parts: A permanent configuration, in which you need to configure
only once for your machine, and the defining of the variables.

For the permanent configuration, the first thing you need is to define the machine bash variable with the same name
as your supercomputer. Let’s say you are in a cluster called samba:

machine="samba"

Now you also need to add a elif under the Creating the vasp.slurm commentary.

Note: Remember that you needed to create a function for the JOB in the vulcan.py script. In our example, this function
should be called launch_samba.

1.3. Configuration - vulcan.sh 5

https://www.vasp.at/wiki/index.php/The_VASP_Manual

Vulcan, Release 0.1

Therefore, in our example, you should add the line:

elif [[$machine == "samba"]]; then
echo -e "from main_launch import *\nx = Calculo('$here' ,'$work', '$database', '$xc',

→˓ $encut)\nx.launch_samba($structure)" > launch_$structure.py

Next, under the LAUNCH commentary, you need to add another elif:

elif [[$machine == "samba"]]; then
echo "Samba!"
sbatch run_$structure.slurm > output_sbatch; awk '{ print $4 }' output_sbatch >

→˓$here/jobid_$structure

Note: I’m considering that your machine have a single partition. If that’s not the case, you can add a variable in
the launch_samba function with the partition and call it using a bash variable in the vulcan.sh script with the name
partition. Follow the explor and occigen examples if you want to add yours.

This is the command to submit your calculation to the queue. In my case, I launch with the sbatch command, but you
modify it according to your machine. We’re done with the permanent configuration! Let’s move on to the last part
(finally!).

1.3.1 Variables on the vulcan.sh

The last thing you need to configure are the variables at the top of the file. I’ll put a standand configuration and explain
it.

#-------Parameters------#
PROJECT="VULCAN_PROJECT"
namework="tutorial_vulcan"
machine="samba"
partition_explor="std" # On Explor --"std", "sky", "mysky"
partition_occigen="HSW24" # On Occigen -- "BDW28", "HSW24"
xc="pbe"

vasp="True"
qe="False"
#------Calculation------#
ncore_test="False"

slab="False"
bader="False"

#########
md="False"
gamma="False"
relax="True"
dos="False"
stm="False"
##
cohp="False"
nbands="500"

(continues on next page)

6 Chapter 1. Contents

Vulcan, Release 0.1

(continued from previous page)

##

##
adsorption="False"
plane_of_separation="9.2" # In the z direction
calculate_chgdiff="False"
##

##########
#-------Parameters------#

The variables PROJECT and namework will define the directory’s names in the $SCRATCH to go in and launch the
calculation. We set vasp="True" (I’m working on adding Quantum Espresso to work with this code as well). Next,
in the “Calculations” section, there are several really important keys for the calculation. Each of them will activate one
part of the run_step_relax function in the vulcan.py script, so you can choose what type of calculation you want
to do. This code can do multiple types of series calculations for each structure, following the order that the variables
appears. In this example, I’m activating only the relax flag, meaning that I want to do a simple relaxation in the
Cu-FCC structure.

Note: The run_step_relax function is faily optimized, because it will make backup files of the important files on
each type of calculation. If you want to restart your calculation when it stops, it will verify what are the flags that
finished well and continue exactly from where you stoped. This way you don’t need to be afraid to re-launch all the
calculations.

And that’s it! Type sh vulcan.sh and watch it run.

1.4 Automated backup

At the end of the calculation, there are several functions to save the important files as a backup. The way the script is
structured now can be a bit heavy on the backup (I’m tired of losing files), but if you need it is possible to modify it
easily on the run_step_relax function.

The most important backup that the script does is to save the current state of each structure to a SQLite3 database (.db
format), this way you’ll have all your results in a single place. The second layer of the backup is done by copying
several important files the each structure and saving it to a CALC_STATES folder in the same directory that you
launched your calculations. In this example it will be in the “~/tutorial-vulcan” folder.

1.5 Useful scripts

I developed a few scripts that can help in the result’s analisys of this code, specially when it comes to the final results
on the SQLite3 database, so we’ll begin by this script. It is a good idea to put the folder where you git cloned these
files in your path. So in your ~/.bashrc you should add:

export PATH=${PATH}:~/path_to_folder_with_scripts

This way you can use this script anywhere.

1.4. Automated backup 7

Vulcan, Release 0.1

1.5.1 search_db.py

This script is used to get some simple information on the structures that a .db file has. A basic usage is with the
command:

$ search_db -f {database_name}.db

For a sample database where I have the results of the H2O molecule, the output is:

There are 1 structures in this database!
ID | Formula | T. Energy (eV) | Max force (eV/A) | a (A) | b (A) | c (A)
1 H2O -14.22402066 0.015 7.94 7.94 7.94

Only valuable for structures with the same composition:
The structure 1 is the most stable with the total energy of -14.22402066 eV

Another interesting thing that can be done is select and visualize the structures that you want by ID. Here I’ll select ID
= 1 (which is the only structure on the database):

search_db -f h2o.db -ids 1 -v True

It will display not only the information regarding this structure but also will use the view function of ASE to plot its
structure.

1.5.2 forces.py

This is a simple script to output the forces according to the OUTCAR file. It is useful to have an idea of how far the
structure is from convergence when doing a structure relaxation. You only need to specify the -c flag, in which the
program will search for all atoms with forces higher than this (units in eV/Angs.).

forces -c 0.02

1.6 Types of calculations

There are already a few available routines that you can perform using this code. It is relativelly simple to implement
new routines based on the ones already available.

Let’s explain what each routine is doing.

TO BE DONE

1.6.1 Gamma-point

Considering that the structure is far from fully relaxed, the idea of this function is to get a rough relaxation with the
𝑔𝑎𝑚𝑚𝑎-point. Before each calculation, the only thing that it does is verify if there is the line reached required on
the OUTCAR_gam file. If it does not, the calculation will begin either from the CONTCAR file (if it exists), or from
a new POSCAR.

8 Chapter 1. Contents

Vulcan, Release 0.1

1.6.2 Relaxation

The same idea as on the 𝑔𝑎𝑚𝑚𝑎-point calculation but now using a higher number of k-points. This time it will verify
the reached required phrase on the OUTCAR_relax file. The number of k-points is automatically set by using the
following formula:

𝑘 = (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 2𝜋/𝑎, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 2𝜋/𝑏, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 2𝜋/𝑐)

where precision = 6 by default. You can set this higher if needed. If the flag slab is set to True in the vulcan.sh
file, k[2] = 1 is used.

At the end of the calculation, if everything goes well, it will save the files defined in the input variable as *_relax.
You can add or remove files in this variable as you please.

1.6.3 Density of States

It uses the same idea as the relax function but setting different inputs for the INCAR. It will double the number of
k-points and set the following inputs: icharg=11, ismear=-5, prec='Accurate', nsw=0. If the flag results
is True on the vulcan.sh file, it will also plot the total Density of States to a file called dos_results in the launch
directory.

1.6.4 COHP

Similar idea to the Density of States calculation, but with different flags following a COHP calculation. As can be seen
in the Lobster manual http://schmeling.ac.rwth-aachen.de/cohp/index.php?menuID=6, one very important parameter
is the number of bands, which you need to set manually on the vulcan.sh file.

After a successful calculation, this routine will also calculate the COHP using the lobster program, so be sure to
have the binary file on your path. (You can get the script for free on their website). I set a very simple lobsterin file
in the program as using only the recommended basis functions from the POTCAR file, feel free to set your own file
according to what you need. You only need to modify the lobsterin string on the vulcan.py script.

1.6.5 STM

1.6.6 Adsorption

1.6.7 Molecular dynamics

1.6. Types of calculations 9

http://schmeling.ac.rwth-aachen.de/cohp/index.php?menuID=6

	Contents
	Usage
	Requirements
	Installation
	Initialization

	Configuration - vulcan.py
	Structure generation
	Calculation setup
	Launch script setup
	Optional setup

	Configuration - vulcan.sh
	Variables on the vulcan.sh

	Automated backup
	Useful scripts
	search_db.py
	forces.py

	Types of calculations
	Gamma-point
	Relaxation
	Density of States
	COHP
	STM
	Adsorption
	Molecular dynamics

